Bacterial Cellulose Production from Industrial Waste and by-Product Streams

نویسندگان

  • Erminda Tsouko
  • Constantina Kourmentza
  • Dimitrios Ladakis
  • Nikolaos Kopsahelis
  • Ioanna Mandala
  • Seraphim Papanikolaou
  • Fotis Paloukis
  • Vitor Alves
  • Apostolis Koutinas
  • James H. Clark
چکیده

The utilization of fermentation media derived from waste and by-product streams from biodiesel and confectionery industries could lead to highly efficient production of bacterial cellulose. Batch fermentations with the bacterial strain Komagataeibacter sucrofermentans DSM (Deutsche Sammlung von Mikroorganismen) 15973 were initially carried out in synthetic media using commercial sugars and crude glycerol. The highest bacterial cellulose concentration was achieved when crude glycerol (3.2 g/L) and commercial sucrose (4.9 g/L) were used. The combination of crude glycerol and sunflower meal hydrolysates as the sole fermentation media resulted in bacterial cellulose production of 13.3 g/L. Similar results (13 g/L) were obtained when flour-rich hydrolysates produced from confectionery industry waste streams were used. The properties of bacterial celluloses developed when different fermentation media were used showed water holding capacities of 102-138 g · water/g · dry bacterial cellulose, viscosities of 4.7-9.3 dL/g, degree of polymerization of 1889.1-2672.8, stress at break of 72.3-139.5 MPa and Young's modulus of 0.97-1.64 GPa. This study demonstrated that by-product streams from the biodiesel industry and waste streams from confectionery industries could be used as the sole sources of nutrients for the production of bacterial cellulose with similar properties as those produced with commercial sources of nutrients.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biotechnological Production of Cellulose by Gluconacetobacter Xylinus from Agricultural Waste

The purpose of this study was to utilize low quality date syrup, a rich and available source of nutrient in Iran, for the production of bacterial cellulose using Gluconacetobacter xylinus. Static batch fermentationfor the purpose of cellulose production by G. xylinus (PTCC, 1734) was studied using low quality date syrupand sucrose solution (Bx. 10%) as fermentation media at 28°C. Re...

متن کامل

The effect of nanoparticles and organic acids on bacterial nano- cellulose synthesis, crystalline structure and water holding capacity

Bacterial cellulose is a biological polymer with a variety of extraordinary properties which make it a functional material for different industrial fields. This work aimed at monitoring the effects of three different organic acids and nanoparticles on the production, water holding capacity and structural characteristics of bacterial cellulose. Different concentrations of organic acids and nanop...

متن کامل

The effect of nanoparticles and organic acids on bacterial nano- cellulose synthesis, crystalline structure and water holding capacity

Bacterial cellulose is a biological polymer with a variety of extraordinary properties which make it a functional material for different industrial fields. This work aimed at monitoring the effects of three different organic acids and nanoparticles on the production, water holding capacity and structural characteristics of bacterial cellulose. Different concentrations of organic acids and nanop...

متن کامل

Isolationand Characterization of Nanocrystal from Corncob Waste Using H2SO4 Hydrolysis Method (RESEARCH NOTE)

Corncob is one of the industrial waste has cellulose content of 39.1 wt%, which makes it has high potential to be a raw material in the production of cellulose nanocrystal. Corncob was delignificated with 3.5 wt% HNO3 and NaNO2 10 mg, precipitated process with 17.5 wt% NaOH, and bleached with 10 wt% H2O2. Cellulose nanocrystal was obtained by hydrolysis using 45 wt% H2SO4. Corncob and cellulose...

متن کامل

Recovery of Methyl Acetoacetate from Antibiotic Production Plant\'s Waste Streams (TECHNICAL NOTE)

Chemical recovery of methyl acetoacetate from the amoxicillin plant’s waste stream was investigated. In process of amoxicillin production for activation of amoxicillin molecule, hydrolysis takes place at final stage. As a result methyl acetoacetate is formed. Liquid-liquid extraction was employed for the recovery of methyl acetoacetate from the waste stream. Diluted alkaline solution was used a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2015